0%

时间反演和空间反演对称下的贝里曲率

时间反演对称性下的贝里曲率是奇函数,空间反演对称性下的贝里曲率是偶函数。

贝里曲率基本公式

贝里联络:

An(k)=iun(k)kun(k)A_{n}(\boldsymbol{k})=i\langle u_{n}(\boldsymbol{k})|\frac{\partial}{\partial\boldsymbol{k}}|u_{n}(\boldsymbol{k})\rangle

贝里曲率:

Ωn(k)=k×An(k)\Omega_n(\boldsymbol{k})=\nabla_{\boldsymbol{k}}\times A_n(\boldsymbol{k})

对贝里曲率的公式进行简化,考虑z方向

Ωz(k)=kxiu(k)kyu(k)kyiu(k)kxu(k)\begin{aligned} \Omega_z(\boldsymbol{k})=&\frac{\partial}{\partial k_x}i\langle u(\boldsymbol{k})|\frac{\partial}{\partial k_y}|u(\boldsymbol{k})\rangle\\ &-\frac{\partial}{\partial k_y}i\langle u(\boldsymbol{k})|\frac{\partial}{\partial k_x}|u(\boldsymbol{k})\rangle \end{aligned}

Ωz(k)=(kx)iu(k)(ky)u(k)(ky)iu(k)(kx)u(k)\begin{aligned} \Omega_z(\boldsymbol{-k})=&\frac{\partial}{\partial (-k_x)}i\langle u(\boldsymbol{-k})|\frac{\partial}{\partial (-k_y)}|u(\boldsymbol{-k})\rangle\\ &-\frac{\partial}{\partial (-k_y)}i\langle u(\boldsymbol{-k})|\frac{\partial}{\partial (-k_x)}|u(\boldsymbol{-k})\rangle \end{aligned}

时间反演对称性

u(k)=u(k)u(-k)=u(k)^{*},得:

Ωz(k)=kxiu(k)kyu(k)\Omega_z(-k)=\frac{\partial}{\partial k_x}i\langle u(k)^*|\frac{\partial}{\partial k_y}|u(k)^*\rangle

已知贝里曲率为实数,对整体求复数共轭,得:

Ωz(k)=Ωz(k)=(kx)(i)u(k)(ky)u(k)=kxiu(k)kyu(k)=Ωz(k)\begin{aligned}\Omega_{z}(-k)=\Omega_{z}^{*}(-k)&=\frac{\partial}{\partial(-k_{x})}(-i)\langle u(k)|\frac{\partial}{\partial(-k_{y})}|u(k)\rangle\\&=-\frac{\partial}{\partial k_{x}}i\langle u(k)|\frac{\partial}{\partial k_{y}}|u(k)\rangle\\&=-\Omega_{z}(k)\end{aligned}

这里只考虑单独一条带的情况。

空间反演对称性

u(k)=u(k)u(-k)=u(k)

Ωz(k)=kxiu(k)kyu(k)=Ωz(k)\Omega_z(-k)=\frac{\partial}{\partial k_x}i\langle u(k)^|\frac{\partial}{\partial k_y}|u(k)\rangle=\Omega_z(k)

贝里曲率为实数证明

利用态矢量的正交归一性: u(R)u(R)=1\langle u(\mathbf{R}) | u(\mathbf{R}) \rangle = 1,于是有: iu(R)u(R)=0\partial_i \langle u(\mathbf{R}) | u(\mathbf{R}) \rangle = 0,将这个导数展开得到:

iu(R)u(R)=u(R)iu(R)\langle \partial_i u(\mathbf{R}) | u(\mathbf{R}) \rangle = - \langle u(\mathbf{R}) | \partial_i u(\mathbf{R}) \rangle

因此 u(R)iu(R)\langle u(\mathbf{R}) | \partial_i u(\mathbf{R}) \rangle 为纯虚数,因此, Ai(R)=Ai(R)A_i^*(\mathbf{R}) = A_i(\mathbf{R}),即贝里联络为实数。贝里联络求导的贝里曲率也为实数。这里的证明是极限导数的情况,如果是离散的数值计算,结果为复数,但虚部为趋于无穷小。