0%

BdG理论

BdG理论

哈密顿量通常可以分为两部分,正常态哈密顿量和相互作用项:

H=H0+H1H=H_0+H_1

H0=σdrΨσ(r)h0(r)Ψσ(r)H_0 = \sum_{\sigma} \int dr \Psi_{\sigma}^{\dagger}(r) h_0(r) \Psi_{\sigma}(r)

H1=12σ,σdrdrΨσ(r)Ψσ(r)gσσ(rr)Ψσ(r)Ψσ(r)H_1 = \frac{1}{2} \sum_{\sigma, \sigma'} \int dr \int dr' \Psi_{\sigma}^{\dagger}(r) \Psi_{\sigma'}^{\dagger}(r') g_{\sigma \sigma'}(r-r') \Psi_{\sigma'}(r') \Psi_{\sigma}(r)

σ\sigma是自旋指标,Ψσ(r)\Psi_{\sigma}(r)是场算符,表示在位置 rr处产生一个自旋为σ\sigma的电子, h0(r)h_0(r)是单电子哈密顿量, gσσ(rr)g_{\sigma \sigma'}(r-r')是电子间的相互作用势。
对于自由电子系统,可写成

h0=22m(iecA)+V(r)μh_0=-\frac{\hbar^2}{2m}\left(\nabla-i\frac{e}{\hbar c}\boldsymbol{A}\right)+V(\boldsymbol{r})-\mu

在 BCS 理论中,有效相互作用可以表示为:

HBCS=kϵkckckV2k,kckckckckH_{BCS} = \sum_{\vec{k}} \epsilon_{\vec{k}} c_{\vec{k}}^{\dagger} c_{\vec{k}} - \frac{V}{2} \sum_{\vec{k},\vec{k}'} c_{\vec{k}\uparrow}^{\dagger} c_{-\vec{k}\downarrow}^{\dagger} c_{-\vec{k}'\downarrow} c_{\vec{k}'\uparrow}

平均场近似
为了处理相互作用项H1H_1,引入平均场近似,平均场表示的是诸如Ψσ(r)Ψσ(r),Ψσ(r)Ψσ(r)\langle\Psi_\sigma(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{\overset{\prime}{r}})\rangle,\quad\langle\Psi_\sigma^\dagger(\boldsymbol{r})\Psi_{\sigma^{\prime}}^\dagger(\boldsymbol{\overset{\prime}{r}})\rangle这类库珀对的期望值。
将算符 Ψσ(r)Ψσ(r)\Psi_\sigma^\dagger(r)\Psi_{\sigma^{\prime}}^\dagger(r^{\prime})Ψσ(r)Ψσ(r)\Psi_\sigma^{\prime}(r^{\prime})\Psi_\sigma(r)表示为

Ψσ(r)Ψσ(r)=Ψσ(r)Ψσ(r)+[Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)]Psiσ(r)Ψσ(r)=Ψσ(r)Ψσ(r)+[Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)]\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})=\langle\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})\rangle+\left[\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})-\langle\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})\rangle\right]\\Psi_{\sigma}(r)\Psi_{\sigma^{\prime}}(r^{\prime})=\langle\Psi_{\sigma}(r)\Psi_{\sigma^{\prime}}(r^{\prime})\rangle+[\Psi_{\sigma}(r)\Psi_{\sigma^{\prime}}(r^{\prime})-\langle\Psi_{\sigma}(r)\Psi_{\sigma^{\prime}}(r^{\prime})\rangle]

H1=12σ,σdrdr(Ψσ(r)Ψσ(r)+[Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)])&×gσ,σ(rr)(Ψσ(r)Ψσ(r)[Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)])&=12σ,σdrdrdr(gσ,σ(rr)Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)gσ,σ(rr)Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r))&gσ,σ(rr)Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)&gσ,σ(rr)[Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)][Ψσ(r)Ψσ(r)Ψσ(r)Ψσ(r)]\begin{aligned}H_{1}&=\frac{1}{2}\sum_{\sigma,\sigma^{\prime}}\int dr\int dr^{\prime}\left(\langle\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})\rangle+\left[\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})-\langle\Psi_{\sigma}^{\dagger}(r)\Psi_{\sigma^{\prime}}^{\dagger}(r^{\prime})\rangle\right]\right)\&\times g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-r^{\prime})\left(-\langle\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle-[\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})-\langle\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle]\right)\&=\frac{1}{2}\sum_{\sigma,\sigma^{\prime}}\int dr\int dr\int dr^{\prime}\left(-g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r})\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r}^{\prime})\rangle\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})-g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_{\sigma^{\prime}}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r})\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r}^{\prime})\right)\&-g_{\sigma,\sigma^{\prime}}(r-\boldsymbol{r}^{\prime})\langle\Psi_{\sigma}^{\dagger}(\boldsymbol{r})\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r}^{\prime})\rangle\langle\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle\&-g_{\sigma,\sigma^{\prime}}(r-\boldsymbol{r}^{\prime})\left[\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})-\langle\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle\right]\left[\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})-\langle\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle\right]\end{aligned}

忽略作为常数项的第三项和作为偏离平均场的二次项的第四项整理

H112σ,σdrdr(Ψσ(r)(gσ,σ(rr)Ψσ(r)Ψσ(r))Ψσ(r)&+Ψσ(r)(gσ,σ(rr)Ψσ(r)Ψσ(r))Ψσ(r))\begin{aligned}H_{1}&\sim\frac{1}{2}\sum_{\sigma,\sigma^{\prime}}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\Big(\Psi_{\sigma}(\boldsymbol{r})(-g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_{\sigma}^{\dagger}(\boldsymbol{r})\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r}^{\prime})\rangle)\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\&+\Psi_{\sigma}^{\dagger}(\boldsymbol{r})(-g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_{\sigma}(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle)\Psi_{\sigma^{\prime}}^{\dagger}(\boldsymbol{r}^{\prime})\Big)\end{aligned}

引入矢量

Ψ(r)(Ψ(r)Psi(r))\left.\vec{\Psi}(r)\equiv\left(\begin{array}{c}\Psi_\uparrow(r)\\Psi_\downarrow(r)\end{array}\right.\right)

第二项进一步改写

12drdr(Ψ(r)Ψ(r))(g,(rr)Ψ(r)Ψ(r)g(rr)Ψ(r)Ψ(r)g,(rr)Ψ(r)Ψ(r)g(rr)Ψ(r)Ψ(r))(Ψ(r)Psi(r))\frac{1}{2}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\begin{pmatrix}\Psi_\uparrow^\dagger(\boldsymbol{r})&\Psi_\downarrow^\dagger(\boldsymbol{r})\end{pmatrix}\begin{pmatrix}-g_{\uparrow,\uparrow}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_\uparrow(\boldsymbol{r})\Psi_\uparrow(\boldsymbol{r}^{\prime})\rangle&-g_{\uparrow\downarrow\downarrow}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_\uparrow(\boldsymbol{r})\Psi_\downarrow(\boldsymbol{r}^{\prime})\rangle\\-g_{\downarrow,\uparrow}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_\downarrow(\boldsymbol{r})\Psi_\uparrow(\boldsymbol{r}^{\prime})\rangle&-g_{\downarrow\downarrow\downarrow}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_\downarrow(\boldsymbol{r})\Psi_\downarrow(\boldsymbol{r}^{\prime})\rangle\end{pmatrix}\begin{pmatrix}\Psi_\uparrow^\dagger(\boldsymbol{r}^{\prime})\\Psi_\downarrow^\dagger(\boldsymbol{r}^{\prime})\end{pmatrix}

定义

Δσσ(r,r)gσ,σ(rr)Ψσ(r)Ψσ(r)hatΔ(r,r)(Δ(r,r)Δ(r,r)Delta(r,r)Δ(r,r))\begin{gathered}\Delta_{\sigma\sigma^{\prime}}(r,r^{\prime})\equiv-g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-\boldsymbol{r}^{\prime})\langle\Psi_\sigma(\boldsymbol{r})\Psi_{\sigma^{\prime}}(\boldsymbol{r}^{\prime})\rangle\\hat{\Delta}(r,r^{\prime})\left.\equiv\left(\begin{array}{cc}\Delta_{\uparrow\uparrow}(\boldsymbol{r},\boldsymbol{r}^{\prime})&\Delta_{\uparrow\downarrow}(\boldsymbol{r},\boldsymbol{r}^{\prime})\\Delta_{\downarrow\uparrow}(\boldsymbol{r},\boldsymbol{r}^{\prime})&\Delta_{\downarrow\downarrow}(\boldsymbol{r},\boldsymbol{r}^{\prime})\end{array}\right.\right)\end{gathered}

得到

12drdrΨ(r)Δ^(r,r)ΨT(r)\frac{1}{2}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\vec{\Psi}^\dagger(\boldsymbol{r})\hat{\Delta}(\boldsymbol{r},\boldsymbol{\overset{\prime}{r}})\vec{\Psi}^{\dagger T}(\boldsymbol{\overset{\prime}{r}})

如果哈密顿量HH是厄米矩阵,那么 H1H_1的第一项应该是第二项的厄米共轭。由于哈密顿量可以看作是以坐标r,rr,r'和自旋指标为下标的无限维矩阵,因此为了取厄米共轭,只需交换坐标rrrr',并对自旋矩阵进行转置和复共轭。
H1H_1的第二项取厄米共轭,得到

12drdrΨT(r)Δ^(r,r)Ψ(r)\frac{1}{2}\int d\boldsymbol{r}^{\prime}\int d\boldsymbol{r}\vec{\Psi}^T(\boldsymbol{r})\hat{\Delta}^\dagger(\boldsymbol{r}^{\prime},\boldsymbol{r})\vec{\Psi}(\boldsymbol{r}^{\prime})

Δ^(r,r)=(g,(rr)Ψ(r)Ψ(r)g,(rr)Ψ(r)Ψ(r)g,(rr)Ψ(r)Ψ(r)g,(rr)Ψ(r)Ψ(r))\left.\hat{\Delta}^\dagger(\boldsymbol{r}^\prime,\boldsymbol{r})=\left(\begin{array}{cc}-g_{\uparrow,\uparrow}(\boldsymbol{r}^\prime-\boldsymbol{r})\langle\Psi_{\uparrow}^\dagger(\boldsymbol{r})\Psi_{\uparrow}^\dagger(\boldsymbol{r}^\prime)\rangle&-g_{\downarrow,\uparrow}(\boldsymbol{r}^\prime-\boldsymbol{r})\langle\Psi_{\uparrow}^\dagger(\boldsymbol{r})\Psi_{\downarrow}^\dagger(\boldsymbol{r}^\prime)\rangle\\-g_{\uparrow,\downarrow}(\boldsymbol{r}^\prime-\boldsymbol{r})\langle\Psi_{\downarrow}^\dagger(\boldsymbol{r})\Psi_{\uparrow}^\dagger(\boldsymbol{r}^\prime)\rangle&-g_{\downarrow,\downarrow}(\boldsymbol{r}^\prime-\boldsymbol{r})\langle\Psi_{\downarrow}^\dagger(\boldsymbol{r})\Psi_{\downarrow}^\dagger(\boldsymbol{r}^\prime)\rangle\end{array}\right.\right)

利用gσ,σ(rr)=gσ,σ(rr)g_{\sigma,\sigma^{\prime}}(\boldsymbol{r}-\boldsymbol{r}^{\prime})=g_{\sigma^{\prime},\sigma}(\boldsymbol{r}^{\prime}-\boldsymbol{r})可以确认,上式与H1H_1的第一项相等。因此, H1H_1最终可表示为

H1=12drdrΨT(r)Δ^(r,r)Ψ(r)+12drdrΨ(r)Δ^(r,r)ΨT(r)H_{1}=\frac{1}{2}\int d\boldsymbol{r}^{\prime}\int d\boldsymbol{r}\vec{\Psi}^{T}(\boldsymbol{r})\hat{\Delta}^{\dagger}(\boldsymbol{r}^{\prime},\boldsymbol{r})\vec{\Psi}(\boldsymbol{r}^{\prime})+\frac{1}{2}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\vec{\Psi}^{\dagger}(\boldsymbol{r})\hat{\Delta}(\boldsymbol{r},\boldsymbol{r}^{\prime})\vec{\Psi}^{\dagger T}(\boldsymbol{r}^{\prime})

Δ^(r,r))σσ=(Δ^(r,r))σσ\hat{\Delta}^\dagger(\boldsymbol{r}^{\prime},\boldsymbol{r})){\sigma\sigma^{\prime}}=-(\hat{\Delta}(\boldsymbol{r},\boldsymbol{r}^{\prime})){\sigma\sigma^{\prime}}始终成立。
考虑对角化无电子间相互作用的哈密顿量H0H_0的二次量子化表示:

H0=drΨσ(r)h0Ψσ(r)H_0=\sum\int d\boldsymbol{r}\Psi_\sigma^\dagger(\boldsymbol{r})h_0\Psi_\sigma(\boldsymbol{r})

通过求解薛定谔方程:

h0fν,σ(r)=Eνfν,σ(r)drfν,σ(r)fν,σ(r)=δν,νδσ,σνfν,σ(r)fν,σ(r)=δ(rr)δσ,σ\begin{aligned}h_0f_{\nu,\sigma}(\boldsymbol{r})&=E_\nu f_{\nu,\sigma}(\boldsymbol{r})\\\int d\boldsymbol{r}f_{\nu,\sigma}^*(r)f_{\nu^{\prime},\sigma^{\prime}}(r)&=\delta_{\nu,\nu^\prime}\delta_{\sigma,\sigma^\prime}\\\sum_{\nu}f_{\nu,\sigma}(r)f_{\nu,\sigma^{\prime}}^{*}(r)&=\delta(r-r^{\prime})\delta_{\sigma,\sigma^{\prime}}\end{aligned}

得到本征值和归一化的波函数EνE_{\nu}fν,σ(r)f_{\nu,\sigma}(r)
对算符Ψσ(r)\Psi_{\sigma}(r)进行幺正变换:

Ψσ(r)=νcν,σfν,σ(r)\Psi_\sigma(r)=\sum_\nu c_{\nu,\sigma}f_{\nu,\sigma}(r)

cν,σc_{\nu,\sigma}是湮灭自旋为σ\sigma、本征值为EiE_{i}的电子的算符。
其结果是,H0H_0可对角化为:

H0=σdrν,νcν,σcν,σfν,σ(r)h0fν,σ(r)=σdrν,νcν,σcν,σfν,σ(r)Eνfν,σ(r)=σνcν,σcν,σEν\begin{aligned}H_{0}&=\sum_{\sigma}\int d\boldsymbol{r}\sum_{\nu,\nu^{\prime}}c_{\nu,\sigma}^{\dagger}c_{\nu^{\prime},\sigma}f_{\nu,\sigma}^{*}(\boldsymbol{r})h_{0}f_{\nu^{\prime},\sigma}(\boldsymbol{r})\\&=\sum_{\sigma}\int d\boldsymbol{r}\sum_{\nu,\nu^{\prime}}c_{\nu,\sigma}^{\dagger}c_{\nu^{\prime},\sigma}f_{\nu,\sigma}^{*}(\boldsymbol{r})E_{\nu^{\prime}}f_{\nu^{\prime},\sigma}(\boldsymbol{r})\\&=\sum_\sigma\sum_\nu c_{\nu,\sigma}^\dagger c_{\nu,\sigma}E_\nu\end{aligned}

变形可得

σνcν,σcν,σEν=σdrν,νcν,σcν,σEνfν,σ(r)fν,σ(r)=σdrν,νcν,σcν,σ(Eνfν,σ(r))fν,σ(r)=σdrν,νcν,σcν,σ(h0fν,σ(r))fν,σ(r)=σdrΨσ(r)(h0Ψσ(r))=σdrΨσ(r)h0Ψσ(r)\begin{aligned}\sum_{\sigma}\sum_{\nu}c_{\nu,\sigma}^{\dagger}c_{\nu^{\prime},\sigma}E_{\nu}&=\sum_{\sigma}\int d\boldsymbol{r}\sum_{\nu,\nu^{\prime}}c_{\nu,\sigma}^{\dagger}c_{\nu^{\prime},\sigma}E_{\nu}f_{\nu,\sigma}^{*}(\boldsymbol{r})f_{\nu^{\prime},\sigma}(\boldsymbol{r})\\&=\sum_{\sigma}\int d\boldsymbol{r}\sum_{\nu,\nu^{\prime}}c_{\nu,\sigma}^{\dagger}c_{\nu^{\prime},\sigma}(E_{\nu}f_{\nu,\sigma}(\boldsymbol{r}))^{*}f_{\nu^{\prime},\sigma}(\boldsymbol{r})\\&=-\sum_\sigma\int d\boldsymbol{r}\sum_{\nu,\nu^{\prime}}c_{\nu^{\prime},\sigma}c_{\nu,\sigma}^\dagger(h_0f_{\nu,\sigma}(\boldsymbol{r}))^*f_{\nu^{\prime},\sigma}(\boldsymbol{r})\\&=-\sum_\sigma\int d\boldsymbol{r}\Psi_\sigma(\boldsymbol{r})\left(h_0^*\Psi_\sigma^\dagger(\boldsymbol{r})\right)\\&=-\sum_\sigma\int d\boldsymbol{r}\Psi_\sigma(\boldsymbol{r})h_0^*\Psi_\sigma^\dagger(\boldsymbol{r})\end{aligned}

H0=12σdrΨσ(r)h0Ψσ(r)+12σdrΨσ(r)h0Ψσ(r)=12σdrΨσ(r)h0Ψσ(r)12σdrΨσ(r)h0Ψσ(r)=12σ,σdrdrδσ,σδ(rr)Ψσ(r)h0(r)Ψσ(r)12σ,σdrdrδσ,σδ(rr)Ψσ(r)h0(r)Ψσ(r)\begin{aligned} H_{0} & =\frac{1}{2} \sum_{\sigma} \int d \boldsymbol{r} \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) h_{0} \Psi_{\sigma}(\boldsymbol{r})+\frac{1}{2} \sum_{\sigma} \int d \boldsymbol{r} \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) h_{0} \Psi_{\sigma}(\boldsymbol{r}) \\ & =\frac{1}{2} \sum_{\sigma} \int d \boldsymbol{r} \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) h_{0} \Psi_{\sigma}(\boldsymbol{r})-\frac{1}{2} \sum_{\sigma} \int d \boldsymbol{r} \Psi_{\sigma}(\boldsymbol{r}) h_{0}^{*} \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) \\ & =\frac{1}{2} \sum_{\sigma, \sigma^{\prime}} \int d \boldsymbol{r} \int d \boldsymbol{r}^{\prime} \delta_{\sigma, \sigma^{\prime}} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) h_{0}\left(\boldsymbol{r}^{\prime}\right) \Psi_{\sigma}(\boldsymbol{r})-\frac{1}{2} \sum_{\sigma, \sigma^{\prime}} \int d \boldsymbol{r} \int d \boldsymbol{r}^{\prime} \delta_{\sigma, \sigma^{\prime}} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \Psi_{\sigma}(\boldsymbol{r}) h_{0}^{*}\left(\boldsymbol{r}^{\prime}\right) \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) \end{aligned}

H0=12drdrΨ(r)h0(r)δ(rr)σ^0Ψ(r)12drdrΨT(r)h0(r)σ^0δ(rr)ΨT(r)H_0=\frac{1}{2}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\vec{\Psi}^\dagger(\boldsymbol{r})h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0\vec{\Psi}(\boldsymbol{r})-\frac{1}{2}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\vec{\Psi}^T(\boldsymbol{r})h_0^*(\boldsymbol{r}^{\prime})\hat{\sigma}_0\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\vec{\Psi}^{\dagger T}(\boldsymbol{r})

引入Nambu 空间

为了把哈密顿量写成更简洁的形式,引入矢量

Φ=(Ψ(r)ΨT(r))=(Ψ(r)Ψ(r)Ψ(r)Ψ(r))\begin{aligned}\vec{\Phi}&=\begin{pmatrix}\vec{\Psi}(\boldsymbol{r})\\\vec{\Psi}^{\dagger T}(\boldsymbol{r})\end{pmatrix}\\&=\begin{pmatrix}\Psi_{\uparrow}(\boldsymbol{r})\\\Psi_{\downarrow}(\boldsymbol{r})\\\Psi_{\uparrow}^{\dagger}(\boldsymbol{r})\\\Psi_{\downarrow}^{\dagger}(\boldsymbol{r})\end{pmatrix}\end{aligned}

得到

H=12drdrΦ(r)(h0(r)δ(rr)σ^0Δ^(r,r)Δ^(r,r)h0(r)δ(rr)σ^0)Φ(r)\left.H=\frac{1}{2}\int d\boldsymbol{r}\int d\boldsymbol{r}^{\prime}\vec{\Phi}(\boldsymbol{r})^\dagger\left(\begin{array}{cc}h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0&\hat{\Delta}(\boldsymbol{r},\boldsymbol{r}^{\prime})\\\hat{\Delta}^\dagger(\boldsymbol{r}^{\prime},\boldsymbol{r})&-h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0\end{array}\right.\right)\vec{\Phi}(\boldsymbol{r}^{\prime})

Bogoliubov变换

需要求解的薛定谔方程

dr(h0(r)δ(rr)σ^0Δ^(r,r)Δ^(r,r)h0(r)δ(rr)σ^0)(fν(r)gν(r))=Eν(fν(r)gν(r))\int d\boldsymbol{r}^{\prime}\begin{pmatrix}h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0&\hat{\Delta}(\boldsymbol{r},\boldsymbol{r}^{\prime})\\\hat{\Delta}^\dagger(\boldsymbol{r}^{\prime},\boldsymbol{r})&-h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0\end{pmatrix}\begin{pmatrix}\boldsymbol{f}_\nu(\boldsymbol{r}^{\prime})\\\boldsymbol{g}_\nu(\boldsymbol{r}^{\prime})\end{pmatrix}=E_\nu\begin{pmatrix}\boldsymbol{f}_\nu(\boldsymbol{r})\\\boldsymbol{g}_\nu(\boldsymbol{r})\end{pmatrix}

(hˇ0ΔˇΔˇhˇ0(r))(fνgν)=Eν(fνgν)\left.\left(\begin{array}{cc}\check{h}_0&\check{\Delta}\\\check{\Delta}^\dagger&-\check{h}_0(\boldsymbol{r}^{\prime})\end{array}\right.\right)\begin{pmatrix}\vec{f}_\nu\\\vec{g}_\nu\end{pmatrix}=E_\nu\begin{pmatrix}\vec{f}_\nu\\\vec{g}_\nu\end{pmatrix}

H=(hˇ0ΔˇΔˇhˇ0),ϕν=(fνgν)\mathcal{H}=\begin{pmatrix}\check{h}_0&\check{\Delta}\\\check{\Delta}^\dagger&-\check{h}_0\end{pmatrix},\vec{\phi}_{\nu}=\begin{pmatrix}\vec{f}_{\nu}\\\vec{g}_{\nu}\end{pmatrix}

Hϕν=Eνϕν\mathcal{H}\vec{\phi}_{\nu}=E_{\nu}\vec{\phi}_{\nu}

由于矩阵HH是厄米矩阵,所以本征矢量组构成完全系。此时,各个归一化的本征矢量相互正交,即

ϕνϕμ=δνμ\vec{\phi}_\nu\cdot\vec{\phi}_\mu=\delta_{\nu\mu}

dr(fν(r)gν(r))(fμ(r)gμ(r))=δνμdr(fν(r)fν(r)gν(r)gν(r))(fμ(r)fμ(r)gμ(r)gμ(r))=δνμ\begin{aligned}\int d\boldsymbol{r}^{\prime}\begin{pmatrix}{f_{\nu}^{\dagger}(\boldsymbol{r}^{\prime})}&{\boldsymbol{g}_{\nu}^{\dagger}(\boldsymbol{r}^{\prime})}\end{pmatrix}\begin{pmatrix}{f_{\mu}(\boldsymbol{r}^{\prime})}\\{\boldsymbol{g}_{\mu}(\boldsymbol{r}^{\prime})}\end{pmatrix}&=\delta_{\nu\mu}\\\left.\int dr^{\prime}\left(\begin{array}{ccc}f_{\nu\uparrow}^{*}(r^{\prime})&f_{\nu\downarrow}^{*}(r^{\prime})&g_{\nu\uparrow}^{*}(r^{\prime})&g_{\nu\downarrow}^{*}(r^{\prime})\end{array}\right.\right)\begin{pmatrix}f_{\mu\uparrow}(r^{\prime})\\f_{\mu\downarrow}(r^{\prime})\\g_{\mu\uparrow}(r^{\prime})\\g_{\mu\downarrow}(r^{\prime})\end{pmatrix}&=\delta_{\nu\mu}\end{aligned}

ν=μν=μ时,有

drσ(fνσ(r)2+gνσ(r)2)=1\int d\boldsymbol{r}\sum_{\sigma}\left(|f_{\nu\sigma}(\boldsymbol{r})|^2+|g_{\nu\sigma}(\boldsymbol{r})|^2\right)=1

定义

a(r)=ν[cν(fν(r)fν(r)gν(r)gν(r))+dν(gν(r)gν(r)fν(r)fν(r))\left.\boldsymbol{a}(\boldsymbol{r})=\sum_\nu\left[c_\nu\left(\begin{array}{c}f_{\nu\uparrow}(\boldsymbol{r})\\f_{\nu\downarrow}(\boldsymbol{r})\\g_{\nu\uparrow}(\boldsymbol{r})\\g_{\nu\downarrow}(\boldsymbol{r})\end{array}\right.\right.\right)+d_\nu\begin{pmatrix}g_{\nu\downarrow}^*(\boldsymbol{r})\\g_{\nu\downarrow}^*(\boldsymbol{r})\\f_{\nu\uparrow}^*(\boldsymbol{r})\\f_{\nu\downarrow}^*(\boldsymbol{r})\end{pmatrix}

Φ(r)=(Ψ(r)Ψ(r)Ψ(r)Ψ(r))=ν[αν(fν(r)fν(r)gν(r)gν(r))+βν(gν(r)gν(r)fν(r)fν(r))]\vec{\Phi}(\boldsymbol{r})=\begin{pmatrix}\Psi_\uparrow(\boldsymbol{r})\\\Psi_\downarrow(\boldsymbol{r})\\\Psi_\uparrow^\dagger(\boldsymbol{r})\\\Psi_\downarrow^\dagger(\boldsymbol{r})\end{pmatrix}=\sum_\nu\left[\alpha_\nu\begin{pmatrix}f_{\nu\uparrow}(\boldsymbol{r})\\f_{\nu\downarrow}(\boldsymbol{r})\\g_{\nu\uparrow}(\boldsymbol{r})\\g_{\nu\downarrow}(\boldsymbol{r})\end{pmatrix}+\beta_\nu\begin{pmatrix}g_{\nu\uparrow}^*(\boldsymbol{r})\\g_{\nu\downarrow}^*(\boldsymbol{r})\\f_{\nu\uparrow}^*(\boldsymbol{r})\\f_{\nu\downarrow}^*(\boldsymbol{r})\end{pmatrix}\right]

α\alpha是湮灭 f,gf,g的算符, β\beta是湮灭 f,gf^*,g^*的算符。
Ψσ(r)\Psi_\sigma(r)有两种形式

Ψσ(r)=ν[ανfνσ(r)+βνgνσ(r)]Ψσ(r)=(Ψσ(r))=ν[ανgνσ(r)+βνfνσ(r)]=[ανgνσ(r)+βνfνσ(r)]\begin{aligned}\Psi_{\sigma}(r)&=\sum_{\nu}\int[\alpha_{\nu}f_{\nu\sigma}(r)+\beta_{\nu}g_{\nu\sigma}^{*}(r)]\\\Psi_{\sigma}(r)&=\left(\Psi_\sigma^\dagger(r)\right)^\dagger\\&=\sum_{\nu}\left[\alpha_{\nu}g_{\nu\sigma}(r)+\beta_{\nu}f_{\nu\sigma}^{*}(r)\right]^{\dagger}\\&=\sum\left[\alpha_{\nu}^{\dagger}g_{\nu\sigma}^{*}(r)+\beta_{\nu}^{\dagger}f_{\nu\sigma}(r)\right]\end{aligned}

βν=αν\beta_\nu=\alpha_\nu^\dagger

Φ(r)=ν[ανaν+(r)+ανaν(r)]\vec{\Phi}(r)=\sum_{\nu}\left[\alpha_{\nu}\vec{a}_{\nu+}(\boldsymbol{r})+\alpha_{\nu}^{\dagger}\vec{a}_{\nu-}(\boldsymbol{r})\right]

aν+(r)=(fν(r)fν(r)gν(r)gν(r))aν(r)=(gν(r)gν(r)fν(r)fν(r))\begin{aligned}\vec{a}_{\nu+}(r)&\left.=\left(\begin{array}{c}{f_{\nu\uparrow}(r)}\\{f_{\nu\downarrow}(r)}\\{g_{\nu\uparrow}(r)}\\{g_{\nu\downarrow}(r)}\end{array}\right.\right)\\\vec{a}_{\nu-}(r)&\left.=\left(\begin{array}{c}g_{\nu\uparrow}^*(\boldsymbol{r})\\g_{\nu\downarrow}^*(\boldsymbol{r})\\f_{\nu\uparrow}^*(\boldsymbol{r})\\f_{\nu\downarrow}^*(\boldsymbol{r})\end{array}\right.\right)\end{aligned}

Bogoliubov-de Gennes 方程

Φ(r)\vec{\Phi}(r)带入哈密顿量

H=12drdrν[ανaν+(r)+ανaν(r)](h0(r)δ(rr)σ^0Δ^(r,r)Δ^(r,r)h0(r)δ(rr)σ^0)ν[ανaν+(r)+ανaν(r)]=12drν,νdr[αλaˉν+(r)+ανaˉν(r)](h0(r)δ(rr)σ^0Δ^(r,r)Δ^(r,r)h0(r)δ(rr)σ^0)[ανaˉν+(r)+ανaˉν(r)]=12drν,ν[ανaˉν+(r)+ανaˉν(r)][ανEνaˉν+(r)ανEνaˉν(r)]\begin{aligned}H&=\frac{1}{2}\int dr\int d\boldsymbol{r}^{\prime}\sum_{\nu}\left[\alpha_{\nu}^{\dagger}\vec{a}_{\nu+}^{\dagger}(\boldsymbol{r})+\alpha_{\nu}\vec{a}_{\nu-}^{\dagger}(\boldsymbol{r})\right]\begin{pmatrix}h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0&\hat{\Delta}(\boldsymbol{r},\boldsymbol{r}^{\prime})\\\hat{\Delta}^{\dagger}(\boldsymbol{r}^{\prime},\boldsymbol{r})&-h_0(\boldsymbol{r}^{\prime})\delta(\boldsymbol{r}-\boldsymbol{r}^{\prime})\hat{\sigma}_0\end{pmatrix}\sum_{\nu^{\prime}}\left[\alpha_{\nu^{\prime}}\vec{a}_{\nu^{\prime}+}(\boldsymbol{r}^{\prime})+\alpha_{\nu^{\prime}}^{\dagger}\vec{a}_{\nu^{\prime}-}(\boldsymbol{r}^{\prime})\right]\\&=\frac{1}{2}\int dr\sum_{\nu,\nu'}\int dr'\left[\alpha_{\lambda}^{\dagger}\bar{a}_{\nu+}^{\dagger}(\boldsymbol{r})+\alpha_{\nu}\bar{a}_{\nu-}^{\dagger}(\boldsymbol{r})\right]\begin{pmatrix}h_{0}(\boldsymbol{r}')\delta(\boldsymbol{r}-\boldsymbol{r}')\hat{\sigma}_{0}&\hat{\Delta}(\boldsymbol{r},\boldsymbol{r}')\\\hat{\Delta}^{\dagger}(\boldsymbol{r}',\boldsymbol{r})&-h_{0}(\boldsymbol{r}')\delta(\boldsymbol{r}-\boldsymbol{r}')\hat{\sigma}_{0}\end{pmatrix}\left[\alpha_{\nu'}\bar{a}_{\nu'+}(\boldsymbol{r}')+\alpha_{\nu'}^{\dagger}\bar{a}_{\nu'-}(\boldsymbol{r}')\right]\\&=\frac{1}{2}\int dr\sum_{\nu,\nu'}\left[\alpha_{\nu}^{\dagger}\bar{a}_{\nu+}^{\dagger}(\boldsymbol{r})+\alpha_{\nu}\bar{a}_{\nu-}^{\dagger}(\boldsymbol{r})\right]\left[\alpha_{\nu'}E_{\nu'}\bar{a}_{\nu'+}(\boldsymbol{r})-\alpha_{\nu'}^{\dagger}E_{\nu'}\bar{a}_{\nu'-}(\boldsymbol{r})\right]\end{aligned}

利用各个本征函数的正交性

H=12drν,ν[ανaˉν+(r)+ανaˉν(r)][ανEνaˉν+(r)ανEνaˉν(r)]=12ν[EνανανEναναν]\begin{aligned} H &= \frac{1}{2} \int d\boldsymbol{r} \sum_{\nu,\nu'} \left[ \alpha_{\nu}^{\dagger} \bar{a}_{\nu +}^{\dagger}(\boldsymbol{r}) + \alpha_{\nu} \bar{a}_{\nu -}^{\dagger}(\boldsymbol{r}) \right] \left[ \alpha_{\nu'} E_{\nu'} \bar{a}_{\nu' +}(\boldsymbol{r}) - \alpha_{\nu'}^{\dagger} E_{\nu'} \bar{a}_{\nu' -}(\boldsymbol{r}) \right] \\ &= \frac{1}{2} \sum_{\nu} \left[ E_{\nu} \alpha_{\nu}^{\dagger} \alpha_{\nu} - E_{\nu} \alpha_{\nu} \alpha_{\nu}^{\dagger} \right] \end{aligned}

如果 ανα _ν满足费米子的反对易关系

H=νανανH=\sum_{\nu}\alpha_{\nu}^{\dagger}\alpha_{\nu}

其中Eν=(ϵkμ)2+Δ2E_{\nu}= \sqrt{(\epsilon_{\vec{k}} - \mu)^2 + |\Delta|^2}
是准粒子的能量,ϵkϵ_k是电子的动能,μμ是化学势。
准粒子能量的表达式揭示了超导能隙的存在,能隙大小为 2Δ2∣Δ∣

能隙

为了确定能隙函数ΔΔ,我们需要解自洽方程。在平均场近似下,能隙函数满足:

Δ(k)=1NkVkkckck\Delta(\boldsymbol{k})=-\frac{1}{N}\sum_{k^{\prime}}V_{\boldsymbol{k}\boldsymbol{k}^{\prime}}\left\langle c_{-\boldsymbol{k}^{\prime}\downarrow}c_{\boldsymbol{k}^{\prime}\uparrow}\right\rangle

通过 Bogoliubov 变换,可以证明:

ckck=ukvk\langle c_{-\vec{k}\downarrow} c_{\vec{k}\uparrow} \rangle = -u_{\vec{k}} v_{\vec{k}}^*

假设+E(k)+E(\boldsymbol{k})的本征值,其对应的本征矢量为u(1)(k)=(uk,vk)u^{(1)}(k)=(u_k,-v_k),另外一个本征态 u(2)(k)=(uk,vk)u^{(2)}(k)=(u_k,v_k)

uk=12(1+ϵkμEk)u_{\vec{k}} = \sqrt{\frac{1}{2} \left(1 + \frac{\epsilon_{\vec{k}} - \mu}{E_{\vec{k}}}\right)}

vk=12(1ϵkμEk)eiθv_{\vec{k}} = \sqrt{\frac{1}{2} \left(1 - \frac{\epsilon_{\vec{k}} - \mu}{E_{\vec{k}}}\right)} e^{i\theta}

能隙方程改写为:

Δ(k)=1NkVkkΔ(k)2E(k)tanh(E(k)2kBT)\Delta(\boldsymbol{k}) = -\frac{1}{N} \sum_{\boldsymbol{k}'} V_{\boldsymbol{k}\boldsymbol{k}'} \frac{\Delta(\boldsymbol{k}')}{2E(\boldsymbol{k}')} \tanh\left( \frac{E(\boldsymbol{k}')}{2k_B T} \right)